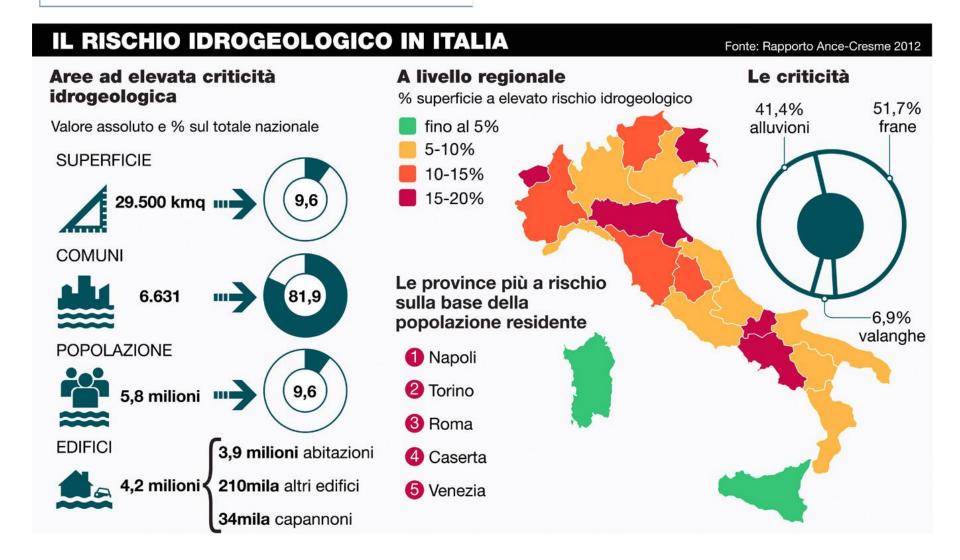


SEMINARIO: PROTEZIONE CIVILE IN LOMBARDIA IL RISCHIO IDRAULICO

Docente: Ing. Riva Efrem

riva.efrem@gmail.com, 333.2196443

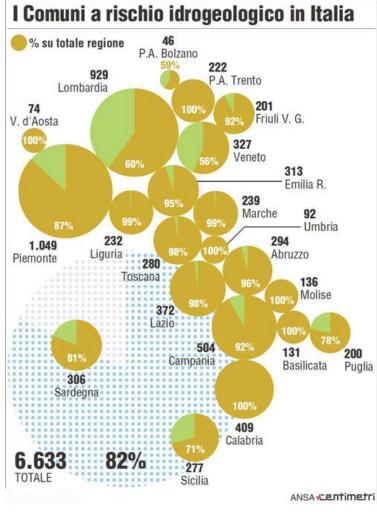
Seminario proposto dall'Ordine degli Architetti PCC Monza e Brianza col Patrocinio della Consulta Architetti Lombardi Durata presentazione : 1 ora



ordine degli architetti pianificatori, paesaggisti e conservatori della provincia di monza e della brianza fondazione

ordine degli architetti pianificatori, paesaggisti e conservatori della provincia di monza e della brianza Sala conferenze ELLEPI – libere professioni Monza (MB), 20900 Via Lario, 15

Corso Rischio Idrogeologico


Assunti del Problema

Corso Rischio Idrogeologico

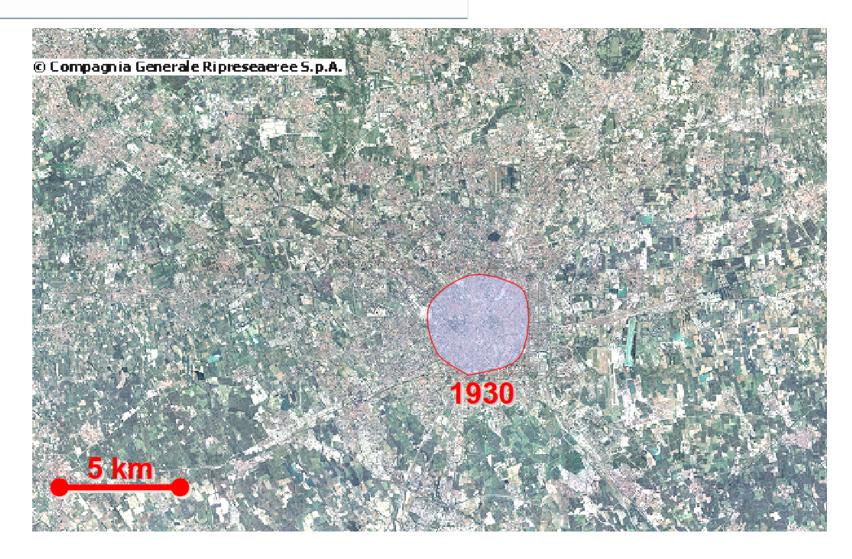
Assunti del Problema

Due facce della stessa medaglia

• Buono e Cattivo utilizzo della Risorsa

Table 1. "Mean" number of victims per year(ICOLD, 2003).

Victims	Countries
0 – 10	Argentina, Australia, Brazil, Canada, France, Ireland, Italy, Netherlands, Norway, South Africa, Sweden, Russia
10 - 20	Spain
50 - 100	Indonesia, USA
100 - 150	Japan
>150	Korea (250), Bangladesh (200), India (1500), China (2000-3000)



Un dato di fatto

• Urbanizzazione: Milano

Matrice di Rischio

Concetto di Rischio

- · Differenze tra Crisi e Rischio
- Il Rischio in senso lato
- Il Rischio Idraulico
- Il falso senso di sicurezza

Rischio

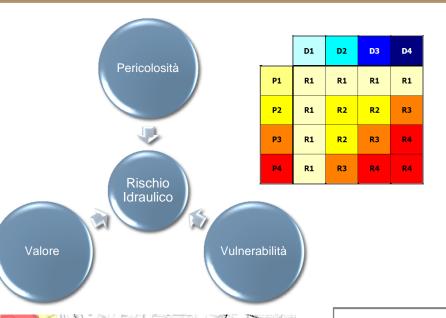
Crisi e Rischio

<u>CRISI</u> = <u>Una crisi è un evento accaduto</u>, o che si prevede possa accadere le cui conseguenze portano ad una situazione instabile e pericolosa. Tale situazione può colpire un individuo, un gruppo, una comunità, o la società intera. Le crisi sono considerate variazioni negative della sicurezza, dell'economia, degli affari politici, sociali o ambientali, soprattutto quando si verificano improvvisamente, con poco o nessun preavviso. Più genericamente, si tratta di un termine che significa un momento di prova o un evento di emergenza

Wej-ji è l'ideogramma cinese del termine CRISI.

I cinesi compongono questo ideogramma attraverso la combinazione di due parole: <u>pericolo</u> e <u>opportunità</u>. In nessuna altra lingua è così ben condensato il significato del termine.

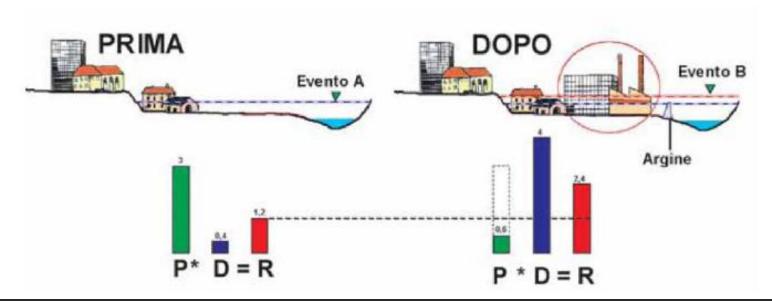
<u>RISCHIO (Treccani)</u>= <u>Eventualità di subire un danno connessa a circostanze più o meno prevedibili</u>. Quello del rischio è un concetto connesso con le aspettative umane e la loro capacità di predizione/intervento in situazioni non note od incerte.

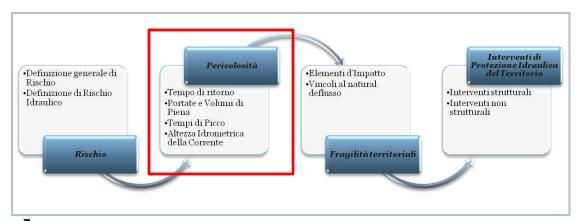

<u>RISCHIO (PMIBOk)</u>≡ Evento o condizione incerta che, se si dovesse verificare, avrebbe un effetto positivo o negativo sugli obiettivi di progetto.

Una minaccia una volta che si materializza diventa un danno. Un'opportunità una volta che si materializza diventa un beneficio.

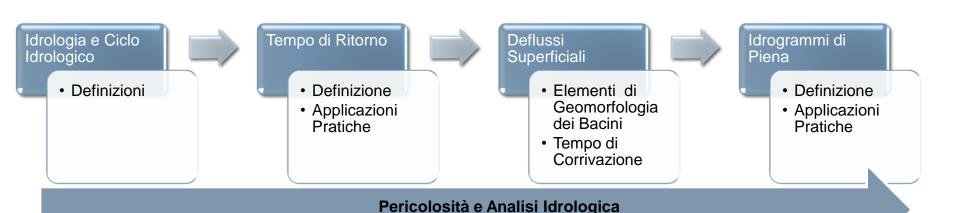
Rischio Idraulico

Rischio Idraulico, corrisponde agli effetti indotti sul territorio dal superamento dei livelli idrometrici critici (possibili eventi alluvionali) lungo i corsi d'acqua principali. (<u>nttp://www.protezionecivile.gov.it</u>).


_	lassi di posizione	Tipologia elementi a rischio
	E1	Aree disabitate o improduttive; demanio pubblico non edificato e/o edificabile
	E2	Aree con limitata presenza di persone; edifici isolati; infrastrutture viarie minori; zone agricole o a verde pubblico
	E3	Nuclei urbani non densamente popolati; insediamenti industriali, artigianali e commerciali minori; infrastrutture viarie secondarie (strade statali, provinciali e comunali)
	E4	Centri urbani; grandi insediamenti industriali e commerciali; beni architettonici, storici e artistici; principali infrastrutture viarie; servizi di rilevante interesse sociale; zona campeggi e villaggi turistici


Ris	schio	Descrizione					
R1	Nullo o basso	Rischio trascurabile					
R2	Moderato	Rischio socialmente tollerabile (non sono necessarie attività di prevenzione)					
R3	Alto	Rischio non socialmente tollerabile (sono necessarie attività di prevenzione)					
R4	Molto alto	Rischio di catastrofe (sono necessarie attività di prevenzione con assoluta priorità)					

Rischio Idraulico – Falso senso di sicurezza



Maggior protezione può portare a ... maggior rischio! Un dato Evento A che prima produceva danno (figura a sinistra), ora dopo la realizzazione della protezione arginale (figura di destra) è neutralizzato perché la portata è contenuta in alveo. Esiste però un evento superiore (Evento B), di minor probabilità, ma sempre possibile che supera la protezione. Poiché l'illusorio senso di sicurezza fornito dall'argine ha indotto l'urbanizzazione dell'area (cerchio a destra), sono aumentati sia il danno potenziale sia il rischio complessivo. La colonna rossa nella parte inferiore della figura a destra è più alta della analoga a sinistra. Se ad esempio la frequenza di inondazione dell'area si riduce di 5 volte (Tr da 30 a 150 anni) ma, in caso di inondazione il danno aumenta di 10 volte, allora si ha una raddoppio del rischio complessivo. P= probabilità degli eventi che superano una certa soglia di danno, D= danno corrispondente, R= rischio (Illustrazione: A. Nardini)

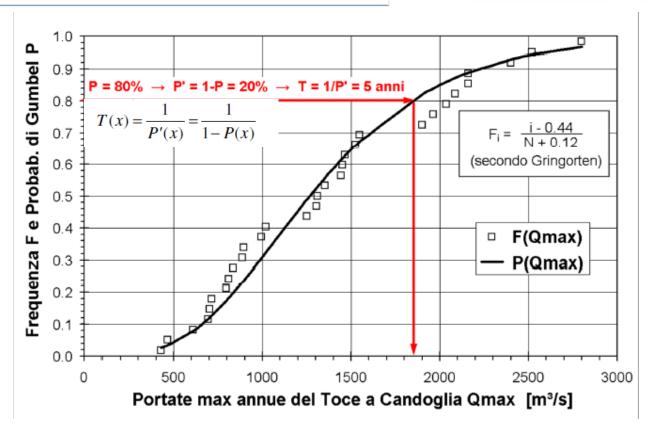
PERICOLOSITÀ ED ANALISI IDROLOGICA

Tempo di ritorno

Si definisce "tempo di ritorno" T(x) il numero di intervalli di tempo che, mediamente in senso statistico, intercorre tra due eventi in cui viene raggiunto o superato il prefissato valore di soglia x della variabile aleatoria considerata.

$$T(x) = \frac{1}{P'(x)} = \frac{1}{1 - P(x)}$$

con P'(x) probabilità di superamento di un determinato valore di soglia.


Se ad esempio la probabilità di superamento vale P'(x) = 20% allora il corrispondente tempo di ritorno vale T(x) = 5 anni.

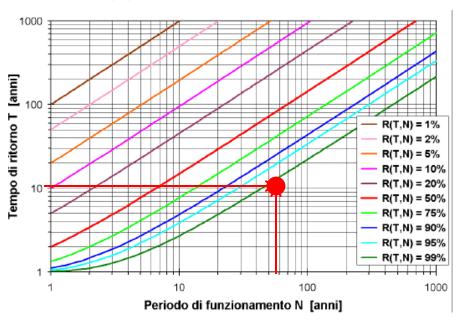
P' (x) T [anni] 1.00 100.00% 10.00 10.00% 20.00 5.00% 50.00 2.00% 1.00% 100.00 200,00 0.50% 500.00 0.20% 1000,00 0.10% 10000.00 0.01%

NOTA: L'uso del tempo di ritorno può in qualche caso indurre in errore, a causa della non perfetta comprensione del fatto che esso esprime un intervallo di tempo medio statistico.

Tempo di ritorno

Per esempio, dire che la portata di piena, con tempo di ritorno 5 anni, del Toce a Candoglia è pari a 1850 m³/s, significa che in tale sezione fluviale la portata di piena supera questo valore MEDIAMENTE sul lungo periodo una volta ogni 5 anni.

Rischio Idrologico



Si definisce "rischio d'insufficienza in N anni" R(N, T(x)) la probabilità che in N anni venga uguagliato o superato il prefissato valore di soglia x della variabile aleatoria considerata, il quale ha tempo di ritorno T(x).

$$R(N,T(x) = 1 - \left[1 - \frac{1}{T(x)}\right]^N$$

T	Durata_ <i>N</i> _[anni]									
[anni]	10	20	50	100	200					
2	99,90	100,00	100,00	100,00	100,00					
5	89,26	98,85	100,00	100,00	100,00					
10	65,13	87,84	99,48	100,00	100,00					
20	40,13	64,15	92,30	99,41	100,00					
50	18,29	33,24	63,58	86,74	98,24					
100	9,56	18,21	39,42	63,40	86,60					

Se l'opera è progettata per durare 50 anni e la piena di riferimento ha un tempo di ritorno di 10 anni, vi è la probabilità del 99.48% che l'opera andrà in crisi almeno una volta durante la sua vita attesa (50 anni).

Se la vita attesa dell'opera è uguale al tempo di ritorno della piena di riferimento, la probabilità d'insufficienza è del 60-65%, dipende dai casi.

Bacino Idrografico

Il bacino idrografico è definito come quella porzione di territorio il cui deflusso idrico superficiale viene convogliato verso una fissata sezione di un corso d'acqua, definita sezione di chiusura del bacino.

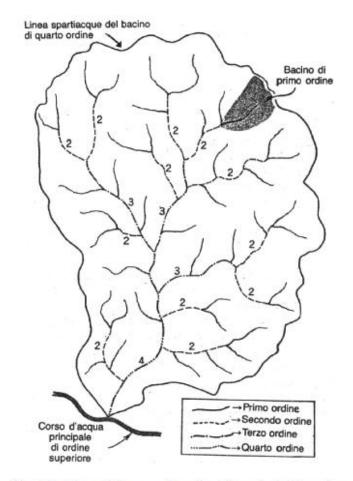
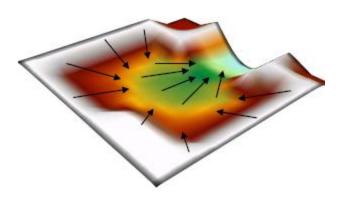
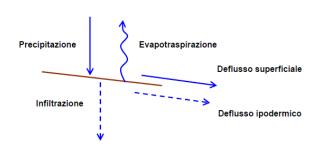



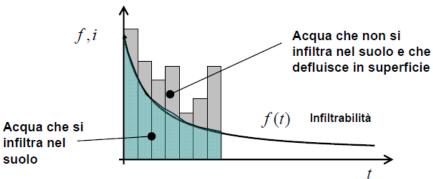
Fig. 1.7 - Schema della gerarchizzazione di un reticolo idrografico


Bacino Idrografico

elevation
107 m asl
80 m asl
vertical exageration = 10

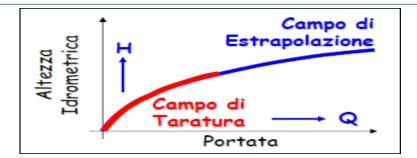


Si definisce *destra o sinistra idrografica* di un corso d'acqua ponendosi nel punto di vista di un osservatore con spalle a monte, ovvero che osserva il corso d'acqua nella direzione della corrente.



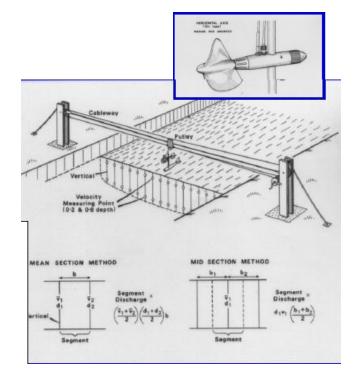
Es: Il **Torrente Bevera** è un affluente di sinistra del **Fiume Lambro** nel quale confluisce in prossimità di **Baggero** (frazione del comune di Merone) dopo un percorso di circa 22 km.

Leggi di filtrazione

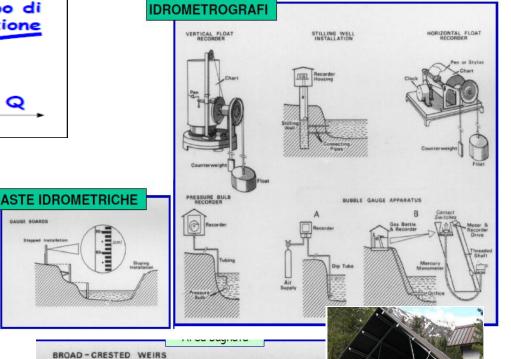


tipo di superficie	ф
tetti impermeabili	$0,70 \div 0,95$
pavimentazioni d'asfalto ben tenute	$0.85 \div 0.90$
pavimentazioni di pietra, laterizi o legno con buone connessure di cemento	$0,75 \div 0,85$
pavimentazioni di pietra, laterizi o legno con giunti aperti o non cementati	$0,50 \div 0,70$
pavimentazioni a blocchi sconnessi con giunti aperti	$0,40 \div 0,50$
strade di macadam	$0,25 \div 0,60$
strade e viali di ghiaietto	$0,15 \div 0,30$
superfici non pavimentate, piazzali ferroviari, terreni non edificati	$0,10 \div 0,30$
parchi, giardini, prati, a seconda della pendenza e della natura del suolo	$0,05 \div 0,25$
aree boscose e foreste, a seconda della pendenza e della natura del suolo	$0,01 \div 0,20$

tipologia urbanistica	ф
edifici densi	0,8
edifici spaziati	0,6
costruzioni con grandi cortili e superfici a giardini	0,5
villini	$0,3 \div 0,4$
giardini, prati e zone non edificate	0,2
parchi e boschi	$0.05 \div 0.1$


Superficie	J	Tempo di ritorno											
superficie	,	2	5	10	25	50	100	500					
Aree urbanizzate													
bitumate		0,75	0,77	0,81	0,86	0,90	0,95	1,00					
calcestruzzo/tetti		0,75	0,80	0,83	0,88	0,92	0,97	1,00					
Aree a verde in cattive con	dizioni (d	opertura	erbacea ii	nferiore al	50% dell'	area)							
	0÷2%	0,32	0,34	0,37	0,40	0,44	0,47	0,58					
	2÷7%	0,37	0,40	0,43	0,46	0,49	0,53	0,61					
	>7%	0,40	0,43	0,45	0,49	0,52	0,55	0,62					
Aree a verde in discrete condizioni (copertura erbacea tra il 50% e il 75% dell'area)													
	0÷2%	0,25	0,28	0,30	0,34	0,37	0,41	0,53					
	2÷7%	0,33	0,36	0,38	0,42	0,45	0,49	0,58					
	>7%	0,37	0,40	0,42	0,46	0,49	0,53	0,60					
Aree a verde in buone cond	lizioni (c	opertura	erbacea sı	periore al	75% dell'	area)							
	0÷2%	0,21	0,23	0,25	0,29	0,32	0,36	0,49					
	2÷7%	0,29	0,32	0,35	0,39	0,42	0,46	0,56					
	>7%	0,34	0,37	0,40	0,44	0,47	0,51	0,58					
Aree rurali													
terreno coltivato	0÷2%	0,31	0,34	0,36	0,40	0,43	0,47	0,57					
	2÷7%	0,35	0,38	0,41	0,44	0,48	0,51	0,60					
	>7%	0,39	0,42	0,44	0,48	0,51	0,54	0,61					
pascoli	0÷2%	0,25	0,28	0,30	0,34	0,37	0,41	0,53					
	2÷7%	0,33	0,36	0,38	0,42	0,45	0,49	0,58					
	>7%	0,37	0,40	0,42	0,46	0,49	0,53	0,60					
foreste	0÷2%	0,22	0,25	0,28	0,31	0,35	0,39	0,48					
	2÷7%	0,31	0,34	0,36	0,40	0,43	0,47	0,56					
	>7%	0,35	0,39	0,41	0,45	0,48	0,52	0,58					

• Misurazione dei portata



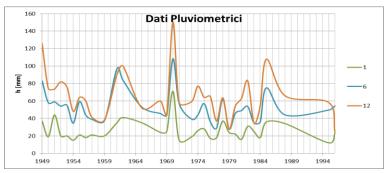
GAUGE BOARDS

TRIANGULAR

3÷5 H

Annali Idrologici

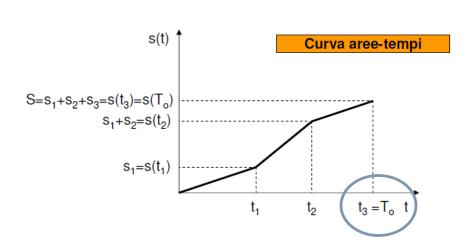
Tabella V. — Precipitazioni di massima intensità registrate ai pluviografi

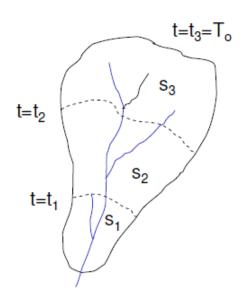

Anno 1947

									1 N	INTERVALLO DI ORE											
BACINO PRINCIPALE		ezza mare		0,30			1			3			6		T :	12		1	24		
E SECONDARI	STAZIONE	Altezza sul mare	mm	INIZ	015		1 N 1 2	10		INIZIO			INIZIO			INIZIO			INIZ		
		m	mm	Giorno e mese	Ora	mm	Giorno e mese	Ora	mm	Giorno e mese	Ora	mm.	Giorno e mese	Ora	mm	Giorno e mese	Ora	mm	Giorno e mese	O	
BACINI MINORI E PIANURA FRA ADDA E LAMBRO																				T	
fra Adda e Lambro	Codegno	58	26.0	22 giu.	17.30	36.4	26 set.	7.00	48.4	26 set.	5.00	51.4	26 set.	2.00	98.6	25 set.	20.00	141.2	25 set.	8	
LAMBRO									,						1						
Lambro	Melegnano	88	42.6	25 set.	0.30	46.8	25 set.	0.00	88.6	25 set.	0.00	119.6	25 set.	0.00	161.0	24 set.	21.00	208.6	24 set.	10	
Olona	Saronno	212	20.0	18 lug.	23.00	31.0	18 lug.	23.00	67.0	25 set.	23.00	114.0	25 set.	20.00	192.4	25 set.	14.00	212.4	25 set.	11	
BACINI MINORI E PIANURA RA LAMBRO E TICINO													20 301.	20.00	102.4	20 sct.	14.0		20 30.		
fra Lambro e Ticino	Busto Arsizio	224	40.0	20 lug.	12.30	54.6	20 lug.	12.00	71.0	20 lug.	12.00	100.0	26 set.	4.00	154.0	25 set.	23.00	175.2	25 set.	12.	
. Id.	Marcallo	159	82.0	25 set.	23.80	39.0	25 set.	23.30	55.2	25 set.	22.00	68.2	25 set.	19.00	98.0	25 set.	18.00	120.0	25 set.	18	
TICINO LAGO MAGGIORE Lago Maggiore	S																1				
Lago di Lugano	Cannobio	220	20.4	5 giu.	14.00	27.4	5 giu.	14.00	39.6	5 giu.	14,00	43.4	. 26 set.	6.00	69.6	26 set.	24.00	108.2	26 set.	15	
	Porlezza	298	22.0	4 ago.	21.30	42.0	4 ago.	21.00	58.0	4 ago.	20,00	58.0	4 ago.	20.00	60.0	24 set.	6.0	97.0	24 set.	6	
Toce	Iselie	657	19.4	8 lug.	-5.30	20.4	8 lug.	5.30	32.8	5 ago.	12.00	55.0	26 set.	6.00	98.4	26 set.	0.00	164.0	25 set.	12	
Id.	Domodossola	277	15.0	28 giu.	0.30	25.4	28 giu.	0.00	35.0	26 set.	2.00	64.0	25 set.	23.00	75.0	25 set.	18.00	187.2	25 set,	12	
AGOGNA				. *		1			i			- 1									
Agogna	Borgomanero	356	26.6	21 ago.	19.00	32.2	21 ago.	19.00	.36.4	21 ago.	19.00	58.0	26 set.	2.00	84.0	25 set.	22.00	116.4	25 set.	14	
Id.	Momo	213	20.0	20 lug.	0.00	26.0	20 lug.	0.00	38.0	26 set.	4.00	55.0	26 set.	1.00	93.0	25 set.	19.00	108.8	25 set.	12	
Id. ·	Novara	164	30.0	26 set.	6.30	89.0	26 set.	6.30	50.8	26 set.	5.00	59.0	26 set.	2.00	89.0	25 set. ·	21.00	108.0	25 set.	12	
SESIA								ı							00.0	1 20 344.		200.0			
Sesia	Campertogno	850	20.0	25 set.	23.00	29.0	25 set.	23.00	62.0	25 set.	22.00	113.0	25 set.	20.00	178.0	25 set.	14.00	272.0	25 set.	111	
Sermenza	Rimasco	905	18.6	25 ago.	23.80	23.0	26 set.	1.00	65,0	26 set.		102.0	25 set.	23.00	162.0	25 set. 25 set.	20.00			8.	
- Mastallone	Camasco	752	40.0	9 lug.	23.00	46.0	9 lug.	28.00	56.0	26 set.		101.0	26 set.	2.00	136.0			253.0	25 set.	1	
Sesia	Varallo	453	24.0	7 lug.	22,30	27.6	7 lug.	22.30	63.6	5 ago.	14.00	76.0	29 mar.			25 set.	23.00	250.0	25 set.	9.	
Id.	Grignasco	848	17.0	. 26 set.	7.00	25.6	26 set.	7.00	44.0	26 set.	5.00	73.0	26 set.	12.00 2.00	115.6	29 mar.	6.00	180.0	25 set.	9.	
Cervo	Огора	1180	20.0	7 lug.	23.10	25.6	7 lug.	23.00	40.0	25 set.	9.00				113.0	25 set.	21.00	140.0	25 set.	7.	
Id.	Bertignano	370	21.0	8 lug.	23.50	29.0	8 lug.	23.50	45.0			72.0	25 set.	11.00	128.0	25 sat.	5.30	209.0	24 set.	23.	
Sesia	Vercelli	185	24.2	22 giu.	18.20	83.0	22 giu.	18.00	35.2	8 lug. 22 giu.	23.50	1	26 set. 22 giu.	17.00 17.00	52.6 • 44.6	26 set. 24 ott.	0.00	78.0	25 set. 24 ott.	22.	
DORA BALTEA							8	,		g	21.00	30.0	zz giu.	11.00	**.0	24 UII.	0.00	10.0	-± O(L	"	
Grand' Eyvia	Lillaz	1600	16.2	2 lug.	18.30	21.0	26 set.	2.00	59.0	26 sat	1.00		004	1.00	100.0	25					
Dora Baltea	Aosta	583	15.4	8 lug.	0.10	15.8		- 1	53.0	26 set.	1.00		26 set.	1.00	138.0	25 set.		217.6	25 set.	9.	
Id.	S. Marcel	680	12.0	26 set.	3.30	15.0	7 lug.	23.40	26.6	26 set.	2.00	46.6	26 set	0.00	85.0	25 set.	19.00	118.0	25 set.	14.	

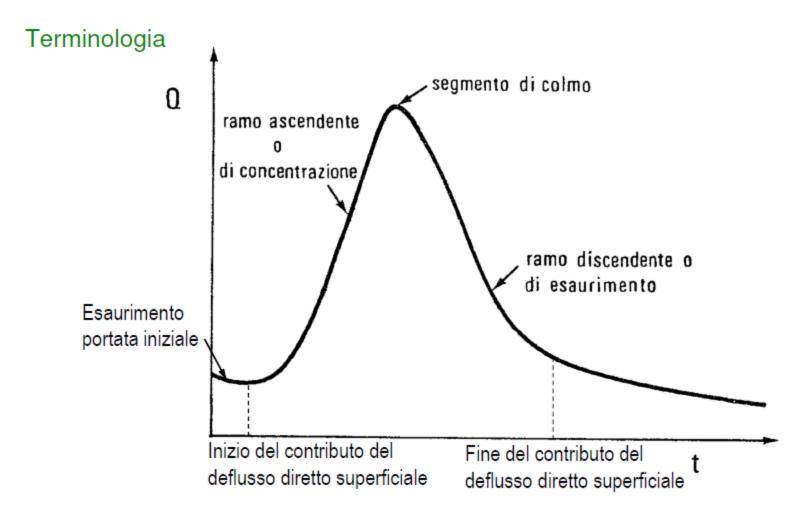
• Curve di Possibilità Pluviometrica (CPP)

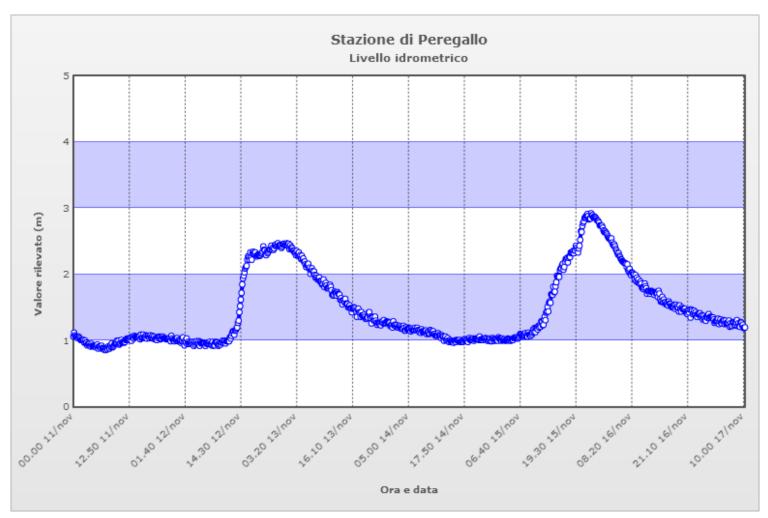
			Da	ati Stazio	ne		
ANNI	15	30	1	3	6	12	24
1996			23	50.4	54.4	24	67.6
1995	6	11.6	12	17.2	49.6	58.2	70.8
1990	13.8		15				
1989	27.8						
1988		27	34	42.6	44	65.8	67.6
1985			36	50	75	107.8	138.8
1984			18	22.4	36	54.2	66.4
1983			25	25.4	34.6	34.6	61.6
1982			31	49	53.6	8 3	83.6
1981			16	39	49	63	72
1980	12		22	43	45.8	54	81
1979			24	27.8	27.8	27.8	28
1978	10.6		37	41	62	63.6	67
1977	10.6		18	21	29	37	53
1976		15.6	17	28.6	36	65	92
1975			28	49	57	64	68.4
1974			26	38.6	44	77	113
1973			19	27.6	39.2	59.2	77.4
1971	11.6		15	25	57	58	69.2
1970		12	71	106	108.4	150	150.2
1969		25	25	36	43.6	45.4	52.2
1968	14	21.4	24	42	45.6	60	94
1965			35	52	53	52	77
1963		13					
1962	11		41	67	83.6	99.7	110.7
1961	9	20	35	70	96.6	90	135
1960		22	20				
1959	9	17	20	22	37.2	38	55
1958		12	13				
1957	7	17.8	21	39	39	41.4	48.2
1956	6.6	13.6	18	24	44	60.2	80.6
1955	11	14.6	21	39	59.2	64	74.2
1954	6	11	15	28.5	34.5	48	63.2
1953	16.5		20	34.5	55	75.8	78
1952	14	19	20	40	54	8 2	100.5
1951		14	44	57.2	59	73.7	86.4
1950		10	19	45	58	74.3	75.3
1949		19	37	70.8	83	125.8	170.7

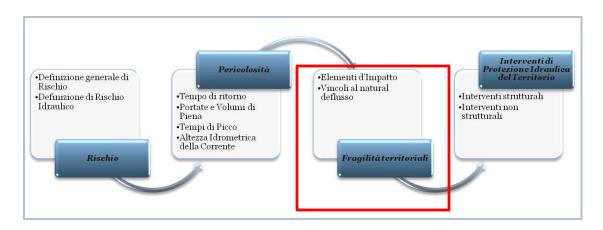

La soglia 80 mm (Tr 5 anni) è raggiunta e superata 7 volte in 33 anni registrati .

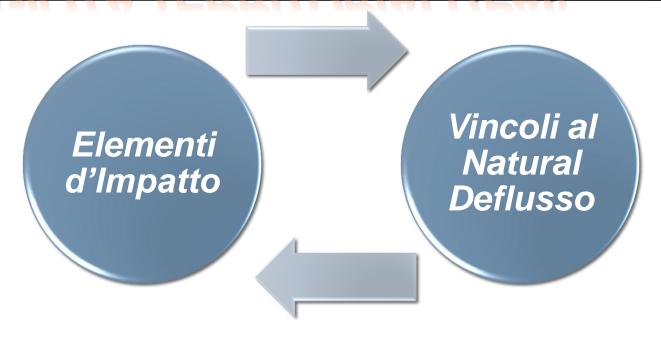

Tempo di Corrivazione

Il tempo di corrivazione valutato in un determinato punto di una rete di drenaggio (naturale o artificiale) è il tempo che occorre alla generica goccia di pioggia caduta, nel punto idrologicamente più lontano, a raggiungere la sezione di chiusura del bacino in esame.


Il tempo di corrivazione varia in funzione delle caratteristiche topografiche e geologiche del bacino e degli usi del suolo attuati sullo stesso.


• Idrogrammi di Piena



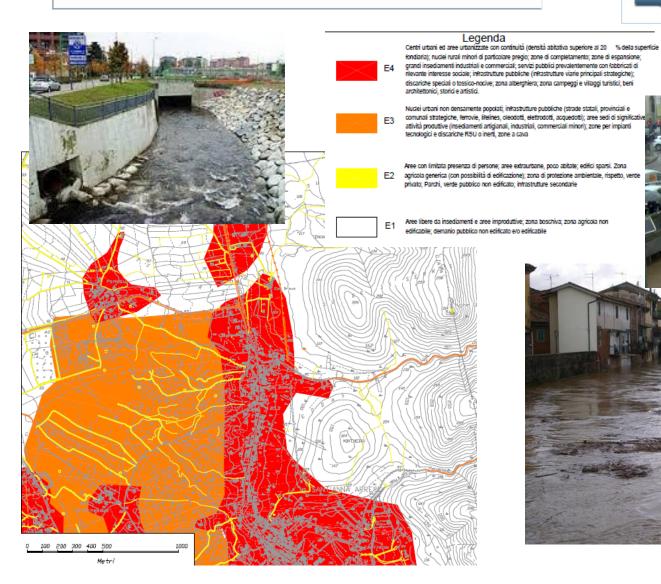

• Idrogrammi di Piena – Esempio Lambro

FRAGILITÀ TERRITORIALI (PAI)

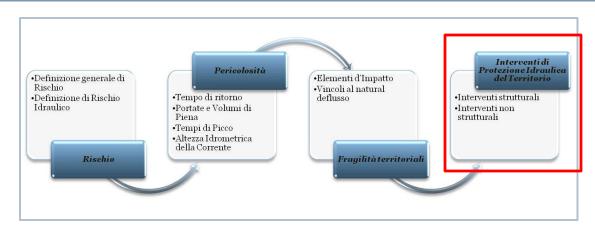
Fragilità territoriali

• Esempio di Fragilità territoriale – PAI

Tabella 6. Classificazione degli elementi a rischio e attribuzione del relativo peso.


Classi	Elementi	Peso
E1	Aree libere da insediamenti e aree improduttive; zona boschiva; zona agricola non edificabile; demanio pubblico non edificato e/o edificabile	0.25
E2	Aree con limitata presenza di persone; aree extraurbane, poco abitate; edifici sparsi Zona agricola generica (con possibilità di edificazione); zona di protezione ambientale, rispetto, verde privato; Parchi, verde pubblico non edificato; infrastrutture secondarie	0.50
Е3	Nuclei urbani non densamente popolati; infrastrutture pubbliche (strade statali, provinciali e comunali strategiche, ferrovie, lifelines, oleodotti, elettrodotti, acquedotti); aree sedi di significative attività produttive (insediamenti artigianali, industriali, commerciali minori); zone per impianti tecnologici e discariche RSU o inerti, zone a cava.	0.75
E4	Centri urbani ed aree urbanizzate con continuità (densità abitativa superiore al 20% della superficie fondiaria); nuclei rurali minori di particolare pregio; zone di completamento; zone di espansione; grandi insediamenti industriali e commerciali; servizi pubblici prevalentemente con fabbricati di rilevante interesse sociale; infrastrutture pubbliche (infrastrutture viarie principali strategiche); zona discarica speciali o tossico nocivi; zona alberghiera; zona campeggi e villaggi turistici; beni architettonici, storici e artistici	1.00

In generale maggiore è il danno atteso (€) maggiore è la fragilità territoriale


Fragilità territoriali

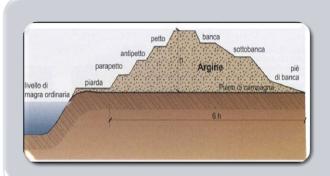
Esempio di Fragilità territoriale – PAI

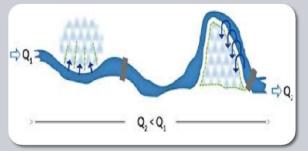
INTERVENTI DI PROTEZIONE IDRAULICA DEL TERRITORIO

Attività di prevenzione

Mitigazione (

Interventi Non Strutturali

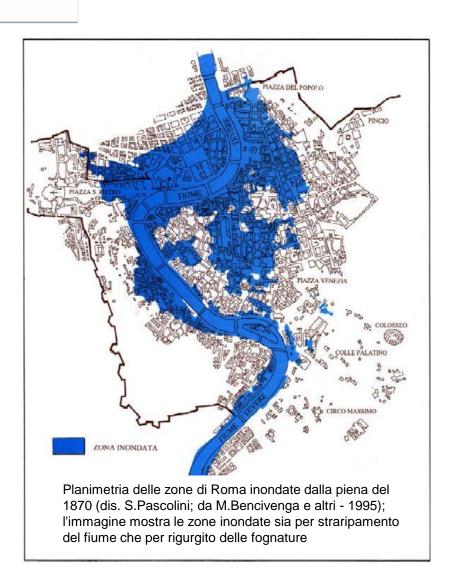



Protezione Idraulica del Territorio

Attività di previsione

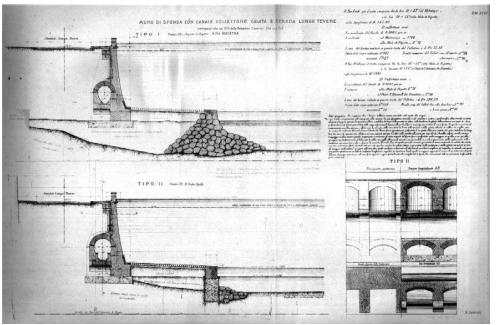
Attività di mitigazione

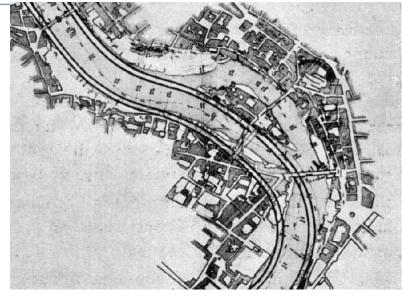
Aumento capacità idraulica


- Arginature
- Ricalibrazione
- Rettifiche Fluviali (Drizzagni)

Riduzione della portate massime

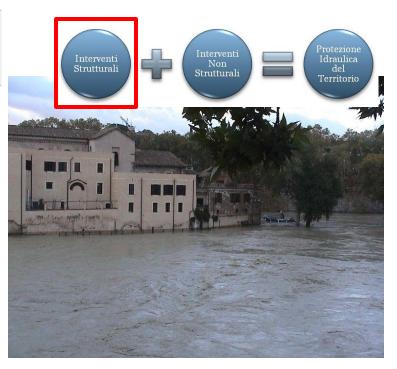
- Diversivi
- Scolmatori
- Serbatoi di laminazione
- Casse d'espansione


I Muraglioni del Tevere (1 di 3)


L'inondazione eccezionale del dicembre pochi 1870 avvenne mesi dopo l'annessione di Roma al Regno d'Italia; ciò non era evidentemente tollerabile per la città che doveva divenire la capitale del immediatamente Regno. Fu guindi nominata da parte del Ministero per i Lavori Pubblici una Commissione con il compito di affrontare e risolvere il problema. "... esaminare sul luogo le condizioni del fiume Tevere e dei suoi principali affluenti; di studiare quali accidentali e permanenti determinano i disalveamenti del fiume a Roma; e finalmente di proporre come si possono risolvere, indicando i provvedimenti e quelle opere d'arte che valgano migliorare il sistema del fiume per lo scopo suaccennato".

I Muraglioni del Tevere (2 di 3)

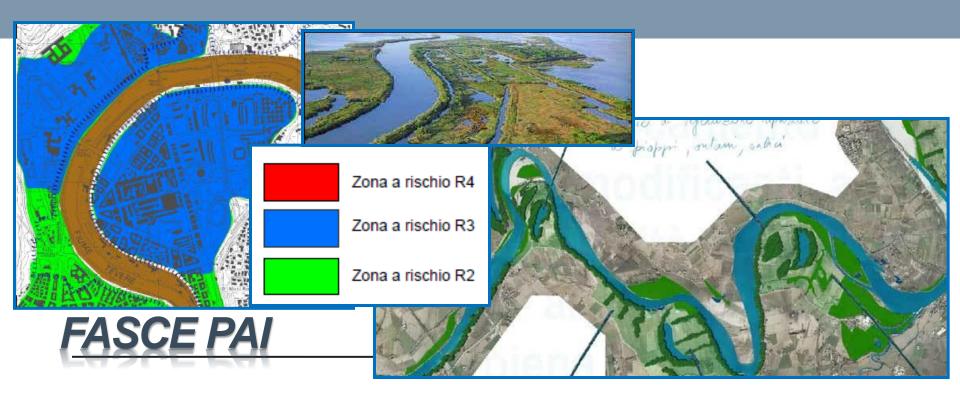
Pianta del progetto originario dell'ing. Canevari (23 settembre 1875); allo scopo di regolarizzare il tracciato del fiume era ancora prevista l'eliminazione dell'isola Tiberina



Particolari di alcune sezioni tipiche dei muri di sponda dal progetto dell'ing. Canevari. Sono visibili le sezioni dell'alveo di magra e di piena, i collettori fognari laterali e la nuova strada Lungo Tevere

• I Muraglioni del Tevere (3di 3)

Rettifiche Fluviali –Esempio Fiume Remo

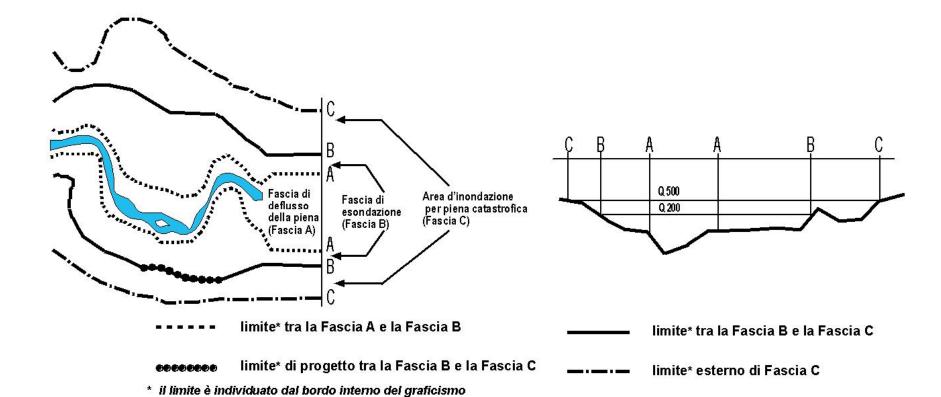


Protezioni Spondali (bizzarre)

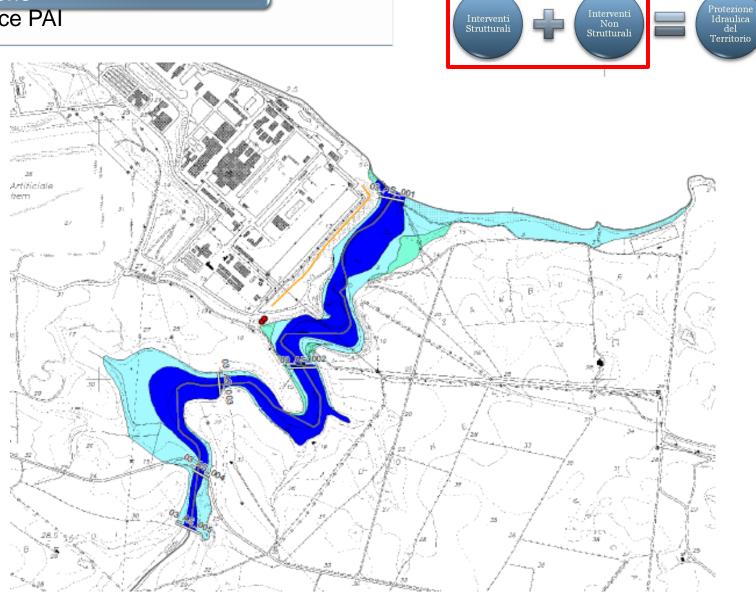
Si chiama "Detroit Riprap" ed è l'esperimento con cui negli anni 50 l'US Army Corps of Engineers pensava di poter controllare i fenomeni di erosione fluviale utilizzando auto a fine vita in giacenza nelle discariche. I vecchi veicoli, infatti, venivano privati di liquidi, motore e batterie e trascinati dalla discarica direttamente lungo i fiumi maggiormente colpiti da fenomeni erosivi; una volta in acqua, le carcasse sono nel tempo diventate parte integrante delle sponde del fiume salvaguardando di fatto il paesaggio naturale (forse....).

Zone di Rischio

Fasce PAI

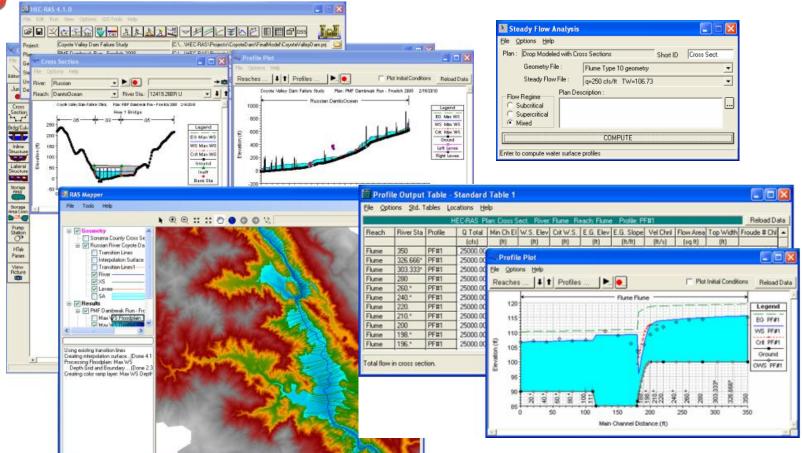


Consiste nella individuazione delle aree a rischio di esondazione e di inondazione, realizzando mappe che permettano di identificare il livello di pericolosità delle diverse parti del territorio. In questa ottica le Autorità di Bacino, seguendo le indicazioni della legge 183/89, hanno individuato delle fasce fluviali attorno ai corsi d'acqua, caratterizzate da diversi livelli di rischio e da assoggettare a vincoli e prescrizioni specifiche.


- <u>-fascia di deflusso della piena (fascia A)</u>: è costituita dalla porzione di alveo che consente l'intero deflusso della corrente (alveo in piena straordinaria). E' delimitata convenzionalmente individuando la <u>porzione di alveo dove defluisce</u> almeno l'80% della portata con tempo di ritorno di 200 anni;
- fascia di esondazione (fascia B): esterna alla precedente, è costituita dalla porzione di alveo interessata da <u>inondazione</u> in relazione alla piena di riferimento, cioè della piena di 200 anni di tempo di ritorno;
- fascia di inondazione per piena catastrofica (fascia C): costituita dalla porzione di territorio interessata da inondazione in relazione ad una piena superiore a quella di riferimento per la fascia B. Per la sua individuazione si considera convenzionalmente la maggiore tra la massima piena storica e la piena con 500 anni di tempo di ritorno.

Fasce PAI

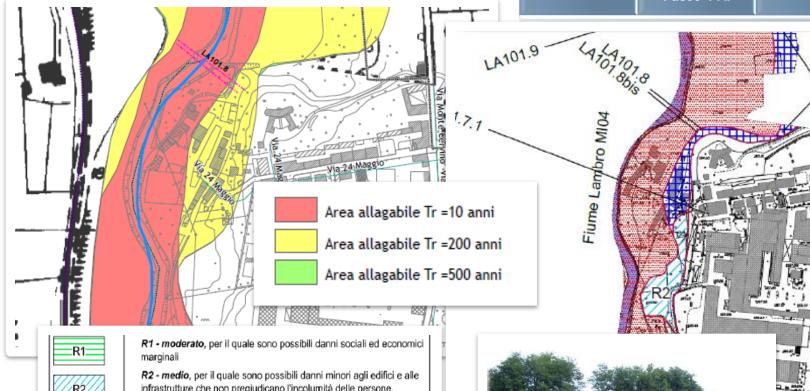
Fasce PAI



Fasce PAI – Modellazione con HEC-RAS

US Army Corps of Engineers

Rischio Idraulico


Rischi connessi

Sormonto Arginale

Presenza di Zone Edificate nelle Fasce PAI

Scarichi Rigurgitati

R3

R2*

R4

infrastrutture che non pregiudicano l'incolumità delle persone, l'agibilità degli edifici e lo svolgimento delle attività soco-economiche

R2* - medio/elevato, sono possibili danni minori agli edifici e alle infrastrutture che non pregiudicano l'incolumità delle persone

R3 - elevato, per il quale sono possibili problemi per l'incolumità delle persone, danni funzionali agli edifici e alle infrastrutture con conseguente inagibilità degli stessi e l'interruzione delle attività socio-economiche, danni al patrimonio culturale

R4 - molto elevato, per il quale sono possibili la perdita di vite umane e lesioni gravi alle persone, danni gravi agli edifici e alle infrastrutture, danni al patrimonio culturale, la distruzione di attività socio-economiche

Alcuni riferimenti

Materiale di studio

- http://www.censu.it/relazione-de-marchi/
- http://www.diiar.polimi.it/diiar/index.asp
- http://www.diiar.polimi.it/amb/didattica.asp
- http://www.csdu.it/
- http://www.gndci.cnr.it/it/vapi/welcome_it.htm
- http://www.idrologia.polito.it/gndci/Vapi.htm
- http://www.sii-ihs.it/
- http://www.idrotecnicaitaliana.it/
- http://www.gii-idraulica.net/
- http://it.wikipedia.org/wiki/Lista_di_alluvioni_e_inondazioni_in_Italia

Annali idrologici

- http://www.acg.isprambiente.it/annalipdf/
- http://meteoniardo.altervista.org/portale-dei-dati-idrologici-italiani.htm

Articoli

- http://www.lastampa.it/2014/11/16/italia/cronache/lesperto-la-soluzione-abbattereinteri-quartieri-della-citt-GFmH2AJ9WXyJhth64bRF3K/pagina.html
- http://www.idrotecnicaitaliana.it/index.php/859

Grazie per l'attenzione*

 "Dobbiamo utilizzare il tempo come uno strumento, non come un divano."

J. F. Kennedy

^{*} Ricordate che un consiglio è gratis, un parere a pagamento